Polyethyleneimine-modified graphene oxide nanocomposites for effective protein functionalization.
نویسندگان
چکیده
A facile method to prepare a biocompatible graphene oxide (GO)-based substrate for protein immobilization was developed to overcome the drawbacks of GO, such as the strong electrostatic and hydrophobic interactions which could potentially alter the conformation and biological activity of proteins. The GO was coated with hydrophilic branched polyethyleneimine (BPEI), while Concanavalin A (Con A) as a model lectin protein was employed to fabricate the functionalized composites to evaluate the feasibility of this strategy. The composites exhibit an extremely high binding capacity for glycoproteins (i.e. IgG 538.3 mg g(-1)), which are superior to other immobilized materials. Moreover, they can work well in 500-fold non-glycoprotein interference and even in complex biological samples. All these data suggest that the GO@BPEI composites will have great potential as scaffolds for proteins fully exerting their biofunctions.
منابع مشابه
High-performance starch-modified graphene oxide/epoxy nanocomposite coatings: A glimpse at cure kinetics and fracture behavior
Epoxy is a versatile resin used in different fields such as coatings, colors, colorants, and composites. Adding nano-scale fillers/additives to the epoxy has valued epoxy coatings for engineering applications, and opened the time of advanced epoxy-based nanocomposite coatings. In the present work, graphene oxide GO was chemically functionalized with starch, as a natural polymer, and added to th...
متن کاملPerformance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملNano-Hybrids Based on Surface Modified Reduced Graphene Oxide Nanosheets and Carbon Nanotubes and a Regioregular Polythiophene
The multi-walled carbon nanotubes (CNTs) and reduced graphene oxide (rGO) nanosheets were functionalized with 2-hydroxymethyl thiophene (CNT-f-COOTh) and 2-thiophene acetic acid (rGO-f-TAA) and grafted with poly(3-dodecylthiophene) (CNT-g-PDDT and rGO-g-PDDT) to manipulate the orientation and patterning of crystallized regioregular poly(3-hexylthiophene) (P3HT). Distinct nano-hybrid structu...
متن کاملGraphene-lead zirconate titanate optothermal field effect transistors
Related Articles Polarization mechanism and quasi-electric-double-layer modeling for indium-tin-oxide electric-double-layer thinfilm-transistors Appl. Phys. Lett. 100, 113506 (2012) High ON/OFF ratio and multimode transport in silicon nanochains field effect transistors Appl. Phys. Lett. 100, 113108 (2012) Integrated on-chip inductors with electroplated magnetic yokes (invited) J. Appl. Phys. 1...
متن کاملEffects of the alkylamine functionalization of graphene oxide on the properties of polystyrene nanocomposites
Alkylamine-functionalized graphene oxides (FGOs) have superior dispersibility in low-polar solvents and, as a result, they interact with low-polar polymers such as polystyrene. In this work, the functionalization of graphene oxide using three types of alkylamines, octylamine (OA), dodecylamine (DDA), and hexadecylamine (HDA), was performed, and nanocomposites of polystyrene (PS) and FGOs were p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 34 شماره
صفحات -
تاریخ انتشار 2015